passpadi

2003

Mathematics

67ca00ce0c643c71d77dee1f

If nP3−6(nC4)=0, find the value of n.

A.

5

B.

6

C.

7

D.

8

Correct Answer: 7

Explanation

solution n P 3 6 ( n C 4 ) = 0 n ! ( n 3 ) ! 6 ( n ! ( n 4 ) ! 4 ! ) = 0 n ! ( n 3 ) ! = 6 ( n ! ( n 4 ) ! 4 ! ) n ! ( ( n 4 ) ! 4 ! ) = 6 n ! ( n 3 ) ! ( ( n 4 ) ! 4 ! ) = 6 ( n 3 ) ! ( n 4 ) ! ( n 3 ) ! = 6 4 ! ( n 4 ) ! ( n 3 ) ( n 4 ) ! = 6 4 × 3 × 2 × 1 1 ( n 3 ) = ] 1 4 n 3 = 4 n = 4 + 3 n = 7

solution n P 3 6 ( n C 4 ) = 0 n ! ( n 3 ) ! 6 ( n ! ( n 4 ) ! 4 ! ) = 0 n ! ( n 3 ) ! = 6 ( n ! ( n 4 ) ! 4 ! ) n ! ( ( n 4 ) ! 4 ! ) = 6 n ! ( n 3 ) ! ( ( n 4 ) ! 4 ! ) = 6 ( n 3 ) ! ( n 4 ) ! ( n 3 ) ! = 6 4 ! ( n 4 ) ! ( n 3 ) ( n 4 ) ! = 6 4 × 3 × 2 × 1 1 ( n 3 ) = ] 1 4 n 3 = 4 n = 4 + 3 n = 7
passpadi
©2023 Passpadi. All rights reserved.