passpadi

2014

Mathematics

67ca00ce0c643c71d77dee1f

If y = cos 3x, find δy/δx

A.

1/3sin3x

B.

−1/3sin3x

C.

3 sin 3x

D.

-3 sin 3x

Correct Answer: -3 sin 3x

Explanation

y = cos 3x Let u = 3x so that y = cos u Now, δy/δx = 3, δy/δx = −sinu By the chain rule, δy/δx=δy/δu × δu/δx δy/δx = (−sinu)(3) δy/δx = −3sinu δy/δx= −3sin3x

y = cos 3x Let u = 3x so that y = cos u Now, δy/δx = 3, δy/δx = −sinu By the chain rule, δy/δx=δy/δu × δu/δx δy/δx = (−sinu)(3) δy/δx = −3sinu δy/δx= −3sin3x
passpadi
©2023 Passpadi. All rights reserved.