passpadi

2023

Mathematics

JAMB

The area A of a circle is increasing at a constant rate of 1.5 cm 2s−1 . Find, to 3 significant figures, the rate at which the radius r of the circle is increasing when the area of the circle is 2 cm2 .

A.

0.200 cms−1

B.

0.798 cms−1

C.

0.300 cms−1

D.

0.299 cms−1

Correct Answer: 0.299 cms−1

Explanation

Area of a circle (A) = πr2 Given dA/dt=1.5 cm2s-1 dr/dt = ? A = 2cm2 Now 2 = πr 2 = r2 = 2/π r = √(2/π) cm = 0.798cm dr/dt = dA/dt × dr/dt dA/dr= 2πr (differentiating A = πr2) dr/dA=1/2πr dr/dt=1.5 × 1/(2 × π × 0.798) = 1.5 × 0.199 dr/dt = 0.299cms−1 (to 3 s.f)

Area of a circle (A) = πr2 Given dA/dt=1.5 cm2s-1 dr/dt = ? A = 2cm2 Now 2 = πr 2 = r2 = 2/π r = √(2/π) cm = 0.798cm dr/dt = dA/dt × dr/dt dA/dr= 2πr (differentiating A = πr2) dr/dA=1/2πr dr/dt=1.5 × 1/(2 × π × 0.798) = 1.5 × 0.199 dr/dt = 0.299cms−1 (to 3 s.f)
passpadi
©2023 Passpadi. All rights reserved.