The area A of a circle is increasing at a constant rate of 1.5 cm 2s−1
. Find, to 3 significant figures, the rate at which the radius r of the circle is increasing when the area of the circle is 2 cm2
.
A.
0.200 cms−1
B.
0.798 cms−1
C.
0.300 cms−1
D.
0.299 cms−1
Correct Answer: 0.299 cms−1
Explanation
Area of a circle (A) = πr2
Given
dA/dt=1.5 cm2s-1
dr/dt = ?
A = 2cm2
Now
2 = πr 2
= r2 = 2/π
r = √(2/π) cm = 0.798cm
dr/dt = dA/dt × dr/dt
dA/dr= 2πr (differentiating A = πr2)
dr/dA=1/2πr
dr/dt=1.5 × 1/(2 × π × 0.798) = 1.5 × 0.199
dr/dt = 0.299cms−1 (to 3 s.f)
Area of a circle (A) = πr2
Given
dA/dt=1.5 cm2s-1
dr/dt = ?
A = 2cm2
Now
2 = πr 2
= r2 = 2/π
r = √(2/π) cm = 0.798cm
dr/dt = dA/dt × dr/dt
dA/dr= 2πr (differentiating A = πr2)
dr/dA=1/2πr
dr/dt=1.5 × 1/(2 × π × 0.798) = 1.5 × 0.199
dr/dt = 0.299cms−1 (to 3 s.f)