passpadi

2023

Mathematics

JAMB

Determine the area of the region bounded by y = 2x2 + 10 and Y = 4x + 16 .

A.

18

B.

−10/3

C.

44/3

D.

64/3

Correct Answer: 64/3

Explanation

To find the point of intersection, equate the two equations ⇒ 2x2 + 10 = 4x + 16 ⇒ 2x2 + 10 - 4x - 16 = 0 ⇒ 2x2 - 4x - 6 = 0 Factorize ⇒ 2(x + 1)(x - 3) = 0 ∴ x = -1 or 3 The curves will intersect at -1 and 3 Area = ∫b a [upper function] - [lower function] dx = ∫3 1 4x + 16 − (2x2+10)dx = ∫3 1 − 2x2 + 4x + 6dx = ((−2x3)/3 + (2x2) + 6x)3 1 = ((−2(3)3)/3 + 2(3)2 + 6(3)) − ((−2(−1)3)/3 + 2(−1)2 + 6(−1)) = 18 - (10/3) = 18 + 10/3 = 64/3

To find the point of intersection, equate the two equations ⇒ 2x2 + 10 = 4x + 16 ⇒ 2x2 + 10 - 4x - 16 = 0 ⇒ 2x2 - 4x - 6 = 0 Factorize ⇒ 2(x + 1)(x - 3) = 0 ∴ x = -1 or 3 The curves will intersect at -1 and 3 Area = ∫b a [upper function] - [lower function] dx = ∫3 1 4x + 16 − (2x2+10)dx = ∫3 1 − 2x2 + 4x + 6dx = ((−2x3)/3 + (2x2) + 6x)3 1 = ((−2(3)3)/3 + 2(3)2 + 6(3)) − ((−2(−1)3)/3 + 2(−1)2 + 6(−1)) = 18 - (10/3) = 18 + 10/3 = 64/3
passpadi
©2023 Passpadi. All rights reserved.