passpadi

2023

Mathematics

JAMB

Find the area, to the nearest cm2, of the triangle whose sides are in the ratio 2 : 3 : 4 and whose perimeter is 180 cm.

A.

1162 cm2

B.

1163 cm2

C.

1160 cm2

D.

1161 cm2

Correct Answer: 1162 cm2

Explanation

Let the length of the sides of triangle be 2x, 3x and 4x. Perimeter of triangle = 180cm ⇒ 2x + 3x + 4x = 180 ⇒ 9x = 180 ⇒ x=180/9 = 20 cm Then the sides of the triangle are: 2x = 2 × 20 = 40 cm; 3x = 3 × 20 = 60cm and 4x = 4 × 20 = 80cm Using Heron's formula Area of triangle = s√(s−a)(s−b)(s−c) Where s = (a + b + c)/2 Let a = 40cm, b = 60cm, c = 80cm and s = (40 + 60 + 80)/2 =180/2 = 90cm ⇒ A = √90(90−40)(90−60)(90−80)=√90×50×30×10=√(1350000) ∴ A =1162cm2 (to the nearest cm2)

Let the length of the sides of triangle be 2x, 3x and 4x. Perimeter of triangle = 180cm ⇒ 2x + 3x + 4x = 180 ⇒ 9x = 180 ⇒ x=180/9 = 20 cm Then the sides of the triangle are: 2x = 2 × 20 = 40 cm; 3x = 3 × 20 = 60cm and 4x = 4 × 20 = 80cm Using Heron's formula Area of triangle = s√(s−a)(s−b)(s−c) Where s = (a + b + c)/2 Let a = 40cm, b = 60cm, c = 80cm and s = (40 + 60 + 80)/2 =180/2 = 90cm ⇒ A = √90(90−40)(90−60)(90−80)=√90×50×30×10=√(1350000) ∴ A =1162cm2 (to the nearest cm2)
passpadi
©2023 Passpadi. All rights reserved.