Find the value of x if [1÷64(x+2)] = [4(x−3) ÷16x]
A.
3/2
B.
2/3
C.
1/3
D.
-3/2
Correct Answer: -3/2
Explanation
[1÷64(x+2)] = [4(x−3) ÷16x] 64-(x+2)=[4(x−3)] ÷ [16x]
breakdown 4,16,64 into a small index no
2−6(x+2) = 22(x−3)÷24(x)
2−6x−12 =22x−4x−6
2−6x−12 = 2−2x−6
− 6x − 12 = − 2x − 6
Collect the like term
−6x + 2x = −6 + 12
−4x =6
x = 6/4
x = −3/2
[1÷64(x+2)] = [4(x−3) ÷16x] 64-(x+2)=[4(x−3)] ÷ [16x]
breakdown 4,16,64 into a small index no
2−6(x+2) = 22(x−3)÷24(x)
2−6x−12 =22x−4x−6
2−6x−12 = 2−2x−6
− 6x − 12 = − 2x − 6
Collect the like term
−6x + 2x = −6 + 12
−4x =6
x = 6/4
x = −3/2