S = √(t2 −4t + 4)
S2 = t2 - 4t + 4
t2 - 4t + 4 - S2 = 0
Using t = −b ± √(b22 −4(1)(4−S2/2(1)
t = 4 ±√(16−4(4−S2)/2
t = 4 ±√(16−16+4S2/2
t = 4 ±√(4S2/2
t = 2(2±S)/2
Hence t = 2 + S or t = 2 - S
S = √(t2 −4t + 4)
S2 = t2 - 4t + 4
t2 - 4t + 4 - S2 = 0
Using t = −b ± √(b22 −4(1)(4−S2/2(1)
t = 4 ±√(16−4(4−S2)/2
t = 4 ±√(16−16+4S2/2
t = 4 ±√(4S2/2
t = 2(2±S)/2
Hence t = 2 + S or t = 2 - S