Explanation
f(x)=x3−12x+5
to find the maximum value, first we differentiate the given function f(x)
i.e dxdf(x)=3x2−12
at the minimum point it is dxdf(x)=0
3x2−12=0
3x2=12
x2=12/3
x=±2
to obtain the minimum value,
put x = -2 into f(x)
f(2)=(−2)3−12(−2)+5
= −8+24+5
= 29−8=21
f(x)=x3−12x+5
to find the maximum value, first we differentiate the given function f(x)
i.e dxdf(x)=3x2−12
at the minimum point it is dxdf(x)=0
3x2−12=0
3x2=12
x2=12/3
x=±2
to obtain the minimum value,
put x = -2 into f(x)
f(2)=(−2)3−12(−2)+5
= −8+24+5
= 29−8=21