passpadi

2015

Mathematics

POST UTME

find the maximum value of the function f(x)=x312x+5f(x) = x^3 - 12x + 5

A.

-9

B.

-2

C.

9

D.

21

Correct Answer: 21

Explanation

f(x)=x312x+5f(x) = x^3 - 12x + 5 

to find the maximum value, first we differentiate the given function f(x)f(x)

i.e df(x)dx=3x212\frac {df(x)}{dx} = 3x^2 - 12

at the minimum point it is df(x)dx=0\frac {df(x)}{dx} = 0

3x212=03x^2 - 12 = 0

3x2=123x^2 = 12

x2=12/3x^2 = 12/3

x=±2x = ± 2

to obtain the minimum value,

put x = -2 into f(x)f(x)

f(2)=(2)312(2)+5f(2) = (-2)^3 - 12(-2) + 5 

= 8+24+5-8 + 24 + 5

= 298=2129 - 8 = 21

f(x)=x312x+5f(x) = x^3 - 12x + 5 

to find the maximum value, first we differentiate the given function f(x)f(x)

i.e df(x)dx=3x212\frac {df(x)}{dx} = 3x^2 - 12

at the minimum point it is df(x)dx=0\frac {df(x)}{dx} = 0

3x212=03x^2 - 12 = 0

3x2=123x^2 = 12

x2=12/3x^2 = 12/3

x=±2x = ± 2

to obtain the minimum value,

put x = -2 into f(x)f(x)

f(2)=(2)312(2)+5f(2) = (-2)^3 - 12(-2) + 5 

= 8+24+5-8 + 24 + 5

= 298=2129 - 8 = 21

passpadi
©2023 Passpadi. All rights reserved.