passpadi

2019

Mathematics

POST UTME

If a=log35a = log_3^5 and b=log2725b = log_{27}^{25}  then

A.

a>b

B.

a=b

C.

a

D.

none of these

Correct Answer: a>b

Explanation

if a=log35a = log^5_3 and b=log2725b = log_{27}^{25} = log3352log^{5^2}_{3^3} = 23log35\frac {2}{3} log^5_3

but a=log35a = log^5_3  ::: b=23a b = \frac {2}{3}a

hence a>ba>b

if a=log35a = log^5_3 and b=log2725b = log_{27}^{25} = log3352log^{5^2}_{3^3} = 23log35\frac {2}{3} log^5_3

but a=log35a = log^5_3  ::: b=23a b = \frac {2}{3}a

hence a>ba>b

passpadi
©2023 Passpadi. All rights reserved.