If logx+2=1+logylog x+2 = 1 + log ylogx+2=1+logy , express yyy in terms of xxx
logx+2=1+logylogx + 2 = 1 + logylogx+2=1+logy
logx+2−logy=1logx + 2 - logy = 1logx+2−logy=1
log10x+2ylog_{10}^{\frac{x + 2}{y}}log10yx+2 =1= 1=1
x+2y=101\frac{x+2}{y} = 10^1yx+2=101
x+2=10yx + 2 = 10yx+2=10y
y=x+210y = \frac{x+2}{10}y=10x+2